Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Poult Sci ; 103(7): 103718, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38692178

ABSTRACT

In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.

2.
Pharmacol Res ; 204: 107194, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663526

ABSTRACT

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.

3.
Poult Sci ; 103(4): 103488, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335669

ABSTRACT

This experiment aimed to investigate the effect of Lonicerae flos and Turmeric extracts (LTE) added to diets on growth performance and intestinal health of broilers. A total of 720 healthy 21-day-old yellow-feathered broilers were randomly divided into 3 treatment groups, with 6 replicates and 40 broilers per replicate. These 3 dietary treatments included a basal diet + 0 g/t LTE (CON), a basal diet + 300 g/t LTE (LTE300), and a basal diet + 500 g/t LTE (LTE500). The results showed that dietary supplementation of LTE linearly increased (P < 0.05) average daily gain (d 21-38) and average daily feed intake (d 21-60). At d 60, LTE300 had the highest serum total antioxidant capacity and total superoxide dismutase (P < 0.05), and LTE500 had the lowest malondialdehyde level (P < 0.05) among the three groups. Moreover, compared to CON, LTE300 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase activity (d 38); LTE500 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase levels (d 60) in the serum. LTE groups significantly (P < 0.05) increased ileal the ratio of villus height to crypt depth and serum immunoglobulin G. Furthermore, dietary supplementation of LTE also improved the intestinal epithelial barrier by the up-regulated mRNA expression of Claudin-1, Occludin and zonula occludens-1, and decreased the mRNA expression of interleukin-2, interleukin-8, tumor necrosis factor-α, nuclear factor κB, myeloid differentiation factor 88 and toll-like receptor 4. Compared to CON, 16S rRNA sequencing analysis showed that LTE300 had a better effect on the microbial diversity and composition in the ileum, and Bacillus and Lactobacillus_agilis were significantly enriched in LTE300. PICRUSt results showed that LTE300 was significantly (P < 0.05) enriched in four pathway pathways at KEGG level 2. In conclusion, dietary supplementation with LTE improved growth performance and intestinal health by enhancing antioxidant capacity, intestinal barrier and immune function, and regulating intestinal flora of yellow-feathered broilers.


Subject(s)
Amine Oxidase (Copper-Containing) , Antioxidants , Lonicera , Plant Extracts , Animals , Antioxidants/metabolism , Chickens/physiology , Curcuma/metabolism , RNA, Ribosomal, 16S , Diet/veterinary , Endotoxins , RNA, Messenger , Animal Feed/analysis , Dietary Supplements/analysis
4.
Life (Basel) ; 13(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37629502

ABSTRACT

The objective of this study was to investigate the effects of dietary supplemental chlorogenic acid and baicalin (CAB) on the growth performance and immunity of broilers challenged with lipopolysaccharide (LPS). This study was designed as a factorial arrangement of 2 dietary CAB treatments × 2 LPS treatments. Birds challenged with or without LPS were fed with a basic diet (CON) and (LPS), the level of CAB diet containing 500 mg/kg CAB(CAB) and (CAB + LPS). The feeding trial lasted for 42 days. Results showed that there was a negative effect on average daily weight gain (ADG) and average body weight of broilers during the animal trial with LPS challenge. The levels of diamine oxidase (DAO), lysozyme (LYZ), immunoglobulin G (IgG), and IgA in the serum, the contents of IL-1ß and TNF-α in the spleen were elevated with LPS treated. Additionally, LPS treatment tended to reduce the jejunal villi height (VH) and total superoxide dismutase (T-SOD) in the serum. Dietary supplemental 500 mg/kg CAB increased the body weight and ADG and improved the feed conversion ratio (FCR) during the trial period. In addition, dietary 500 mg/kg CAB elevated the ratio of VH to crypt depth in the jejunum and reduced the content of protein carbonyl. Beyond that, the levels of IgG and IgA in the serum and transforming growth factor (TGF-ß) in the spleen were up-regulated with 500 mg/kg CAB supplementation. In conclusion, dietary CAB was beneficial for growth performance and immunity of broilers challenged with lipopolysaccharide.

5.
Front Immunol ; 14: 1342852, 2023.
Article in English | MEDLINE | ID: mdl-38187371

ABSTRACT

Introduction: The evolution of nutritional strategies to improve the gut health and microbiota profiles of early-weaned piglets is essential to reduce diarrhoea caused by weaning stress. Therefore, the aim of this study was to determine the effects of dietary supplementation of Qi-Weng-Huangbo powder, a traditional herbal medicine consisting of a mixture of Pulsatilla chinensis, Chinese Schneid and Astragalus extracts (PCE), on the growth performance, diarrhoea rate, immune function and intestinal health of weaned piglets. Methods: 162 piglets were randomly assigned to the CON group (no PCE added), the PCEL group (300 mg/kg PCE) and the PCEH group (500 mg/kg PCE) at the end of the third week post farrowing. There were 9 replicates of each group with 6 pigs per replicate. The experiment lasted for 28 days and sampling was performed on the final day. Results: The results showed that the PCE diet increased the average daily gain (ADG) and final body weight (BW) compared to the CON group. Both supplemented doses of PCE reduced the faecal scores of piglets, and the diarrhoea rate in the PCEL group was significantly lower than that in the CON group. The application of PCE diets promoted the development of the spleen in piglets and up-regulated serum immunoglobulin concentrations to enhance immune function, which was also reflected in the down-regulated gene expression of the colonic TLR/MyD88/NF-κB pathway. Supplementation with PCE improved intestinal morphology, and all doses of PCE significantly increased villus height (VH) in the ileum, whereas colonic crypt depth (CD) was significantly lower in the PCEH group than in the CON group. The PCEH diet significantly increased the levels of valeric and isovaleric acid in the colon content. Dietary PCEH also improved the colonic microbial community profile, reflected by a significant increase in Shannon's index compared with CON group. The abundance of Veillonellaceae and Rhodospirillales was significantly increased in the PCEH group at the family level. Discussion: In conclusion, dietary PCE reduced diarrhoea rates, improved growth performance and enhanced immune function in weaned piglets. These improvements were potentially supported by altered ileum and colonic morphology, elevated colonic VFA levels, and modulation of colonic microbial profiles.


Subject(s)
Diet , Qi , Animals , Swine , Powders , Weaning , Diarrhea/veterinary , Immunity
6.
Front Microbiol ; 14: 1289490, 2023.
Article in English | MEDLINE | ID: mdl-38282732

ABSTRACT

According to the Chinese encyclopedia "Ben Cao Gang Mu" (AD 1552-1578), Caprifoliaceae and Scutellaria baicalensis Georgi are used in traditional Chinese medicine to clear heat, detoxify, and treat wind-heat colds, upper respiratory tract infections, and pneumonia. However, the mechanism and the effects of the compound extracts of Caprifoliaceae and Scutellaria baicalensis Georgi on intestinal health remain unclear. From the perspective of intestinal microbes, this study assessed the antioxidant, anti-inflammatory, and intestinal protective properties of Caprifoliaceae and Scutellaria baicalensis Georgi. Mice received diets with or without Caprifoliaceae and Scutellaria baicalensis Georgi extractive (BCA) for 2 weeks in this study. The results showed that BCA increased body weight gain, feed intake, and catalase (CAT) content in the mice but reduced γ-glutamyl transpeptidase (γ-GT) content in the serum (p < 0.05). BCA improved the Sobs, Chao, and Ace indices, as well as the number of Campylobacterota, Patercibacteria, and Desulfobacterota in the colon microbiota, while it decreased the Firmicutes phylum (p < 0.05). At the genus level, BCA increased Candidatus_Saccharimonas, Helicobacter, unclassified_f_Lachnospiraceae, Alistipes, norank_f_norank_o_Clostridia_vadinBB60_group, norank_f_Ruminococcaceae, unclassified_f_Ruminococcaceae, etc. abundance (p < 0.05), but it significantly decreased Lactobacillus and Lachnospiraceae_UCG_001 abundance (p < 0.05). Moreover, BCA improved the concentration of acetic acid, butyric acid, propionic acid, valeric acid, and isovaleric acid and diminished the concentration of isobutyric acid (p < 0.05). Correlation analysis shows that the changes in short-chain fatty acids and antioxidant and inflammatory indices in the serum were significantly correlated with the BCA-enriched microbiota. This study supplemented a database for the application of Caprifoliaceae and Scutellaria baicalensis Georgi in clinical and animal production.

7.
Fish Shellfish Immunol ; 123: 75-84, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35240294

ABSTRACT

The purpose of the study was to investigate the effects of Eucommia ulmoides leaf extract (ELE) on the common occurrence of liver steatosis, chronic inflammation, oxidative stress, disturbance of gut microbiota, and disease susceptibility in high-fat diet-fed channel catfish. Channel catfish fed three diets, including a high-fat diet (11% crude fat) and ELE-supplemented diets containing 1‰ or 2‰ ELE for 4 weeks. The results showed the contents of liver triacylglycerol of 1‰ and 2‰ ELE groups were reduced, and ELE treatments decreased the expression of lipogenesis related genes (srebp-1c, pparγ, and acc-1), and increased the expression of lipolysis related genes (pparα). In addition, the supplementation of ELE improved the inflammatory response of the liver and intestine. ELE could improve the destruction of intestinal morphology structure and increase the expression level of hif-1a and tight junction proteins (Occludin, Claudin2, Claudin15). 2‰ ELE significantly enhanced the antioxidant capacity of intestine by increasing the activity of SOD enzyme. Moreover, the supplement of ELE significantly increased the abundance of Cetobacterium and Romboutsia (p < 0.05). Compared with the control group, the expression of immune factor nf-κb had a significant decrease, and il-1ß showed a tendency to decrease in the ELE supplement groups after pathogenic bacteria challenge. In conclusion, the ELE alleviated fatty liver disease and inflammation response, improved the oxidative capacity and physiological structure of intestine, and improved the structure of intestinal microbiota and disease resistance in HFD-fed channel catfish.


Subject(s)
Eucommiaceae , Gastrointestinal Microbiome , Ictaluridae , Animals , Antioxidants/metabolism , Diet, High-Fat , Disease Resistance , Eucommiaceae/chemistry , Eucommiaceae/metabolism , Inflammation/metabolism , Inflammation/veterinary , Intestines , Lipid Metabolism , Liver/metabolism , Plant Extracts/pharmacology
8.
Front Immunol ; 13: 781934, 2022.
Article in English | MEDLINE | ID: mdl-35265068

ABSTRACT

This study aimed to investigate the effects of dietary astragalus polysaccharide (APS) supplementation on the immune function, gut microbiota and metabolism of broiler chickens challenged with necrotic enteritis (NE). Two hundred forty Arbor Acres broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary APS (0 or 200 ppm of diet) and two disease challenge groups (control or NE challenged). The results showed that NE infection significantly increased FCR, mortality rate, Th17/Treg (Th17 cells% in blood and ileum, Th17/Treg, IL-17 and IL-17/IL-10 in blood), NO, lysozyme activity and IL-1ß in blood, intestinal immune cell proportion and activity (Tc%, Treg% and monocyte phagocytic activity in ileum), intestinal inflammatory cytokines (TLR2, NF-κB, TNF-α and IL- 6) gene expression levels, and the number of Clostridium perfringens in cecum. NE infection significantly reduced body weight gain, thymus index, lymphocyte proliferation activity in blood and ileum, villus height and V/C in jejunum, Th cells% and Mucin2 gene expression in ileum. Dietary APS supplementation significantly increased body weight, feed intake, proportion of immune cells (T cells in blood and Tc, Treg in ileum), lymphocyte proliferation activity, V/C in jejunum, and ZO-1 gene expression in ileum. Dietary APS supplementation significantly reduced FCR and mortality rate, Th17/Treg, Th17%, intestinal pathology scores, intestinal inflammatory cytokine gene expression levels, and the number of Clostridium perfringens in cecum. In addition, broilers challenged with NE significantly increased Staphylococcus and Turicibacter and reduced α diversity of microbiota in ileum. Dietary APS supplementation significantly increased α diversity, Romboutsia, Halomonas, propionic acid, butyric acid, formononetin, taurine, cholic acid and equol and downregulated uric acid, L-arginine and serotonin in ileum. Spearman's correlation analysis revealed that Romboutsia, Turicibacter, Staphylocpccus, Halomonas, Streptococcus, Escherichia-Shigella, Prevotella, uric acid, L-arginine, jerivne, sodium cholate and cholic acid were related to inflammation and Th17/Treg balance. In conclusion, APS alleviated intestinal inflammation in broilers challenged with NE probably by regulating intestinal immune, Th17/Treg balance, as well as intestinal microbiota and metabolites.


Subject(s)
Enteritis , Enterocolitis, Necrotizing , Gastrointestinal Microbiome , Poultry Diseases , Animal Feed/analysis , Animals , Arginine , Body Weight , Chickens , Cholic Acid , Clostridium perfringens , Dietary Supplements/analysis , Enteritis/veterinary , Inflammation/veterinary , Interleukin-17 , Polysaccharides/pharmacology , T-Lymphocytes, Regulatory , Th17 Cells , Uric Acid
9.
Foods ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-37430907

ABSTRACT

Helpful for human health, omega-3 (n-3)-enriched eggs are preferred by consumers. However, antioxidants should be added to the hen's diet to prevent n-3 fatty acid oxidation due to their unsaturated bonds. A study was designed to investigate the effects of different antioxidants on performance, egg quality, fatty acid profile, oxidation parameters, gene expression, and magnum morphology. A total of 450 hens were divided into five dietary groups. Wheat-flaxseed was used for the basic diet (control) and supplemented with vitamin E (VE), chlorogenic acid (CA), polyphenol (PF), and lutein (L). The experiment lasted for 10 weeks. The eggs were collected on the 5th week and were analyzed for quality, oxidative stability, and fatty acid (FA) content, being stored for 0 d, 7 d, 14 d, 21 d, 28 d, 35 d, and 42 d. The results showed that supplemental VE, PF, CA, and L improved the egg weight and hen day egg production compared to the control group (p < 0.05). The VE, PF, and L groups significantly (p < 0.05) reduced the malondialdehyde (MDA) and maintained the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in the egg yolk. The albumen height and Haugh unit were maintained in the egg yolk till 35 days of storage by the VE, PF, and L groups, while the CA group reduced the albumen quality after 21 d storage. The VE, PF, CA, and lutein maintained the content of alpha-linolenic acid (ALA), during the whole storage period. The total n-3 FA and docosahexaenoic acid (DHA) were retained in the egg yolk till 35 and 28 days of storage, respectively, and slightly decreased after 35 and 28 days in the L groups. The total n-6 (Tn-6) FA was maintained in the yolk till 28 days of storage in the CA and PF groups, respectively. The VE, PF, and L groups upregulated the expression of Nrf-2, P38MAPK, HO-1, SOD-1, and GSH-Px as compared to the CA and control groups. The VE, PF, and L groups significantly increased the magnum primary folds and epithelium height as compared to CA and the control. Thus, it was concluded that the use of PF and L is better at preventing egg quality deterioration and lipid oxidation, maintaining more than 300 mg/egg n-3 FA during storage, by activating the Nrf-2 pathway through the phosphorylation of P38MAPK, and enhancing the phase-2 antioxidant defense enzymes, namely, SOD, GSH-Px, and HO-1.

10.
Front Cell Infect Microbiol ; 11: 798052, 2021.
Article in English | MEDLINE | ID: mdl-35059326

ABSTRACT

Colitis, a chronic inflammatory bowel disease, is characterized by bloody diarrhea and inflammation in the colon. Lonicera hypoglauca ("Shanyinhua" in Chinese) and Scutellaria baicalensis ("Huangqin" in Chinese) are two traditional Chinese medicinal plants rich in polyphenols, such as chlorogenic acid (CGA) and baicalin (BA), with the effects of anti-inflammation and antioxidation. However, it remains unknown whether extracts from L. hypoglauca and S. baicalensis (LSEs) could mitigate colonic inflammation. In the present study, ICR mice (22.23 ± 1.65 g) were allocated to three groups treated with chow diet without (CON) or with dextran sulfate sodium (DSS) (CON+DSS) in water or LSE supplementation in diet with DSS (LSE+DSS), and then inflammatory and oxidative parameters and colonic microbiota were detected. The results showed that LSE (500 mg/kg) treatment mitigated DSS-induced colitis symptoms and restored the shortened colon length, the increased disease activity index (DAI), and the damaged intestinal barrier. In serum, LSE supplementation significantly decreased levels of pro-inflammatory cytokines including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and increased IL-10 level. Meanwhile, superoxide dismutase (SOD) and catalase (CAT) were increased, and malondialdehyde (MDA) and reactive oxygen species (ROS) levels were decreased. In the colon tissue, qPCR results showed that LSE supplementation dramatically downregulated the transcriptional expression of IL-1ß, IL-6, TNF-α, and MDA and upregulated the expression of SOD1, CAT, and IL-10. Additionally, the damaged gut barriers occludin and zonula occludens-1 (ZO-1) in the CON+DSS group were enhanced with LSE supplementation. Furthermore, LSE treatment regulated the gut microbial communities with higher relative abundance of Dubosiella and Ruminococcus torques group and lower relative abundance of Bacteroides and Turicibacter. Moreover, the contents of short-chain fatty acids (SCFAs) as products of gut microbiota were also increased. Correlation analysis showed that the mRNA expression of SOD1 was negatively correlated with TNF-α (r = -0.900, P < 0.05); the mRNA expression of IL-6 (r = -0.779, P < 0.05) and TNF-α (r = -0.703, P < 0.05) had a dramatically negative correlation with Dubosiella. In conclusion, LSE supplementation could effectively ameliorate inflammation by modulating oxidative stress and gut microbiota in a colitis mouse model.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lonicera , Plants, Medicinal , Animals , China , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/metabolism , Dextran Sulfate , Dietary Supplements , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Oxidative Stress , Plant Extracts/pharmacology , Scutellaria baicalensis
11.
Biomed Res Int ; 2020: 2524314, 2020.
Article in English | MEDLINE | ID: mdl-33294434

ABSTRACT

H9N2 subtype avian influenza virus (H9N2 AIV) is a low pathogenic virus that is widely prevalent all over the world. H9N2 AIV causes immunosuppression in the host and often leads to high rates of mortality due to secondary infection with Escherichia. Due to the drug resistance of bacteria, many antibiotics are not effective in the treatment of secondary bacterial infection. Therefore, the purpose of this study is to find effective nonantibiotic drugs for the treatment of H9N2 AIV infection-induced secondary bacterial infection and inflammation. This study proves, for the first time, that baicalin, a Chinese herbal medicine, can regulate Lactobacillus to replace Escherichia induced by H9N2 AIV, so as to resolve the intestinal flora disorder. In addition, baicalin can effectively prevent intestinal bacterial translocation of SPF chickens' post-H9N2 AIV infection, thus inhibiting secondary bacterial infection. Furthermore, baicalin can effectively treat H9N2 AIV-induced inflammation by inhibiting intestinal structural damage, inhibiting damage to ileal mucus layer construction and tight junctions, improving antioxidant capacity, affecting blood biochemical indexes, and inhibiting the production of inflammatory cytokines. Taken together, these results provide a new theoretical basis for clinical prevention and control of H9N2 AIV infection-induced secondary bacterial infection and inflammation.


Subject(s)
Bacterial Infections/drug therapy , Chickens/microbiology , Chickens/virology , Coinfection/microbiology , Flavonoids/therapeutic use , Inflammation/virology , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/virology , Animals , Antioxidants/metabolism , Bacterial Infections/complications , Bacterial Translocation/drug effects , Coinfection/complications , Coinfection/drug therapy , Coinfection/virology , Cytokines/genetics , Cytokines/metabolism , Flavonoids/pharmacology , Gastrointestinal Microbiome , Gene Expression Regulation/drug effects , Health Status , Inflammation/complications , Inflammation/pathology , Mucus/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Specific Pathogen-Free Organisms , Tight Junctions/metabolism
12.
Front Microbiol ; 10: 1681, 2019.
Article in English | MEDLINE | ID: mdl-31396190

ABSTRACT

Dietary inclusions of baicalin and chlorogenic acid were beneficial for intestinal health in pigs. Nevertheless, it is unknown whether these plant-derived products had protection for intestine against bacterial challenge in chickens. This study was aimed at evaluating the potential mitigating effects of plant extracts (PE) from Flos lonicerae combined with Baikal skullcap (the active components are chlorogenic acid and baicalin) on intestinal disruption and dysbacteriosis induced by Salmonella pullorum in laying hens. A total of 216 41-week-old layers were randomly divided into 3 groups (6 replicates per group): negative control (NC), S. pullorum-infected positive control (PC), and the S. pullorum-infected group with supplementation of PE at 1000 mg/kg. All birds except those in NC were challenged with S. pullorum at the end of 4 weeks of the experiment. S. pullorum challenge impaired (P < 0.05) the production performance (egg production, feed intake, and feed efficiency) of laying hens, increased (P < 0.05) serum endotoxin content and frequency of Salmonella-positive organs, as well as up-regulated (P < 0.05) ileal expression of pro-inflammatory cytokines including IFNG, TNFA, IL8, and IL1B, whereas PE addition reversed (P < 0.05) these changes and increased (P < 0.05) ileal IL10 expression. Supplemental PE moderated ileal microbiota dysbiosis in challenged birds, characterized by a reduced abundance of Firmicutes along with increased abundances of Bacteroidetes (Bacteroides), Deferribacteres and several butyrate-producers such as Prevotellaceae, Faecalibacterium, Blautia, Butyricicoccus, Lachnoclostridium, and Olsenella, which may assist with energy harvesting and boost anti-inflammatory capacity of host. The decreased abundance of Firmicutes with the increased abundance of Bacteroidetes caused by PE addition had positive correlations with the decreased expression of ileal pro-inflammatory cytokines. The increased abundances of Bacteroidetes (Bacteroides) and Prevotellaceae following PE addition were also positively correlated with the improvement of performance (egg production and feed intake) of laying hens. Collectively, supplemental PE from Flos lonicerae in combination with Baikal skullcap alleviated S. pullorum-induced intestinal disruption and performance impairment in laying hens, which could be at least partially responsible by the modulation of gut microbial composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...